文章编号:0253-2239(2001)12-1478-04

10 GHz 增益开关激光器输出脉冲的 三级压缩实验研究*

马晓红** 于晋龙 戴居丰 杨恩泽

(天津大学电子信息工程学院;光电信息技术科学教育部重点实验室,天津 300072)

余建国

(武汉邮电科学研究院,武汉 430074)

摘要: 通过理论分析、数值模拟和实验,研究了 10 GHz 增益开关半导体激光器输出脉冲的几种压缩技术,提出了 一种新型的三级压缩技术,包括 1)正色散光纤补偿;2)正色散光纤加负色散光纤的脉冲压缩;3)梳状色散光纤 压缩,实验上得到脉冲宽度为 2.8 ps 的压缩脉冲,总的压缩比为 9。此压缩技术对实验 80 Gb/s 光时分复用 (OTDM)系统具有重要意义。

关键词: 增益开关半导体激光器;群速度色散;自相位调制;脉冲压缩 中图分类号:TN248.4 文献标识码:A

1 引 言

分布反馈布拉格(DFB)半导体激光器由于其稳 定性和易于集成性,广泛用作超高速率光通信系统 的光源。特别由于它工作在增益开关状态可以产生 窄光脉冲的特性,而被广泛应用于光孤子通信系统 和光时分复用系统中。但由于增益开关分布反馈激 光二极管输出脉宽为20ps~30ps,并且具有较大的 啁啾,所以消啁啾与脉冲压缩技术在光孤子和光时 分复用光源中受到重视。相关的技术包括正色散光 纤对光脉冲初始啁啾的补偿及脉宽压缩、光纤-光栅 对压缩、孤子效应压缩等。

本文通过理论分析及数值模拟,并且从实验上 研究了一种新型的三级压缩技术。分别研究了正色 散光纤对增益开关光脉冲的色散补偿及压缩、正色 散光纤加负色散光纤组成的压缩器以及梳状色散光 纤压缩器,分析了各种光脉冲压缩技术的优化过程。 1)正色散光纤对增益开关光脉冲有消除线性啁啾 和压窄的作用^[12],但压缩比有限,光纤长度有最佳 值;2)正色散光纤加负色散光纤组成的压缩器是 光纤--光栅对压缩原理的全光纤化实现,其压缩比与

** * 现通讯地址 清华大学电子工程系,北京 100084。 收稿日期 2001-02-26;收到修改稿日期 2001-04-09 脉冲功率有关;3)梳状色散光纤是替代色散渐减 光纤的一种可得到较好脉冲质量的实用光脉冲压缩 技术,对于皮秒脉冲可有效压缩^[6],但其最佳光纤长 度与入射脉冲宽度的平方成正比,如单独作用于增 益开关脉冲,则需几十公里的梳状色散光纤,缺乏实 用性。鉴于此,设计了将三种光脉冲压缩技术组合 使用的方案。有效地减小了脉冲压缩用的光纤长 度。

2 理论分析与计算

描述激光器的动态特性通常采用激光器单模速 率方程 利用数值方法解速率方程 ,可以较全面地研 究包括波形和啁啾等增益开关半导体激光器的输出 特性。增益开关半导体激光器的输出脉冲近似为高 斯脉冲 ,具有较大的负啁啾。通过实验 ,可以测定激 光器的稳态和瞬态的特性以确定其内部参数 ,从而 实现较真实的数值模拟^[3]。本文中得出单模速率方 程的数值解 ,并将其作为输入脉冲模拟一系列压缩 过程。对于增益开关光脉冲 ,压缩方法有多种 ,下面 分析三种方法。

2.1 正色散光纤对负啁啾脉冲的消啁啾及脉冲压 窄作用

增益开关半导体激光器的输出脉冲具有负啁 啾 啁啾高斯脉冲在传输过程中形状仍保持为高斯

^{*} 国家自然科学基金(69707002)及教育部骨干教师资助 课题。

形,其脉冲宽度
$$\Delta t'$$
 与初始脉宽 Δt 之比为^[4]:

$$\frac{\Delta t'}{\Delta t} = \left[\left(1 + \frac{4\ln 2 C\beta_2 L}{\Delta t^2} \right)^2 + \left(\frac{4\ln 2\beta_2 L}{\Delta t^2} \right)^2 \right]^{1/2}, (1)$$

其中 L 为光纤长度 , β_2 为光纤色散系数 ,C 为啁啾 系数。该方程表明 ,只有当 β_2 与 C 符号相反时 ,脉冲 被压缩 ,因此该脉冲经过一段正色散光纤 ,脉冲会被 压窄。当它继续在光纤中传输时 ,脉冲又被展宽。这 就是 $\beta_2 C < 0$ 时的脉冲初始窄化过程 ,利用这一原 理可以使增益开关半导体激光器的输出脉冲初步被 压缩。在计算机模拟中 ,通过解单模速率方程 ,得到 激光器的输出脉冲宽度为 25 ps ,谱宽为 0.6 nm ,正 色散光纤的色散系数 $\beta_2 = 36 \text{ ps}^2/\text{km}$,非线性系数 $\gamma = 4.8 \text{ W}^{-1} \cdot \text{km}^{-1}$,计算得到最佳光纤长度为 0.95 km ,压缩后脉宽为 10 ps(见图 2 附图)。正色散 光纤可补偿脉冲的线性啁啾 ,初步压缩脉冲 ,但非线 性啁啾仍然存在。

2.2 正色散光纤加负色散光纤的脉冲压缩器

利用光纤中自相位调制和群速度色散互作用可 以实现光脉冲的压缩。假设输入为无啁啾脉冲,在 正色散光纤中传输时,自相位调制(SPM)作用使其 频谱展宽,同时光纤的正群速度色散(GVD)与自相 位调制的相互作用可以使脉冲展宽,脉冲在其整个 宽度上发展成近似线性啁啾。在其后的负色散光纤 中可以将大部分脉冲能量压缩成窄脉冲,其原型是 光纤-光栅对压缩器。正色散光纤与负色散光纤均 有其最佳长度^[4]。压缩比 *F*。与入射脉冲峰值功率 在关:

$$F_{\rm c} = \frac{N}{1.6}$$
 , (2)

其中 $N = (\gamma P_0 \Delta t^2 / | \beta_2 |)^{1/2}$, P_0 为脉冲峰值功率。 通过数值方法解非线性薛定谔方程,将上节中 压缩后的脉冲作为输入脉冲,可以找到此种压缩器 的正色散光纤和负色散光纤的最佳长度(输出脉冲 的模拟结果见图 3 附图)。

由于输入脉冲还存在小量的啁啾,同时输入脉 冲振幅和相位波动产生的随机啁啾对脉冲压缩有影 响,实际的光纤长度稍长,压缩比稍小。

2.3 梳状色散光纤压缩技术

一种新型的脉冲压缩技术是利用色散渐减光 纤。沿光脉冲传输方向,光纤色散逐渐减小,自相位 调制效应逐渐增强,相当于孤子阶数 N 在增加,最 终导致光脉冲压缩。此压缩过程可以通过数值解色 散渐减光纤中的非线性薛定谔方程来模拟^[5]:

 $i\frac{\partial u}{\partial \xi} + \frac{1}{2}p(\xi)\frac{\partial^2 u}{\partial \tau^2} + |u|^2 u = 0, \quad (3)$

其中 $p(\xi) = |\beta_2(\xi)\beta_2(0)|$ 为光纤的输出与输入 端的色散变化量 ξ 为归一化长度。

目前色散渐减光纤还没有适用的产品面市,也 不容易根据计算结果随意改变光纤的色散变化规 律,用梳状色散光纤(CDPF)可以代替之^[6],即取不 同长度的普通单模光纤和色散位移光纤交替连接在 一起,使其平均色散按渐减规律变化。段数越多,其 色散累积越接近色散渐减光纤,但由于段数的增加 使附加的焊接损耗增加,从而削弱压缩效果,因此如 何选取光纤色散变化规律及光纤段数是设计梳状色 散光纤达到最佳压缩效果的关键。计算表明,总共 约10段光纤为佳,将上节压缩后的脉冲输入梳状色 散光纤中,可得数值模拟的结果(见图 5 附图)。

3 实 验

建立了如图 1 所示的实验装置。

Fig.1 The scheme of the experimental setup for compressing of 10 GHz gain-switch DFB laser output pulses

利用 10 GHz 增益开关半导体激光器作光源, 它产生约 25 ps 的窄脉冲,随后设计制作了三级脉 冲压缩器。首先利用一段正色散光纤对增益开关半 导体激光器输出脉冲的负啁啾进行补偿,其色散系 数为 36 ps²/km,非线性系数为 2.9 W⁻¹·km⁻¹,损 耗为 1.28 dB/km,经过优化后光纤长度为 1.2 km, 输出脉冲宽度为 12.9 ps \mathbb{Z} 2 为自相关曲线波形。 第二级脉冲压缩器是由正色散光纤加负色散光 纤组合而成。输入平均光功率约为 17 dBm ,掺铒光 纤放大器(EDFA₂)提供足够的脉冲峰值功率。实验 中所用正色散光纤参数同上 ,长 1.09 km ,负色散光 纤色散系数为 – 20 ps²/km ,长 1.96 km。图 3 为此 级压缩后(图 1 中 B 点)的脉冲自相关曲线波形 ,脉

Fig.2 Autocorrelator trace of the output of gain-switch laser compensated by DCF (point A in Fig. 1) The inset is the result of the numerical simulation)

Fig. 3 Autocorrelator trace of the output of the compressor of normal dispersion followed by anomalous dispersion fiber (point B in Fig. 1 X The inset is the result of the numerical simulation)

第三级脉冲压缩器是自制的梳状色散光纤,由 色散位移光纤和单模光纤交替连接组成。其实际长 度搭配如图4,光纤总长度为7.323 km,总损 耗8dB。

Fig.4 The scheme of comb-like dispersion profile fiber 输出脉冲波形如图 5 脉宽为 2.8 ps 压缩比 3。
图 6 为输出脉冲光谱 ,谱宽 1.88 nm ,脉宽带宽积为 0.65。

结论 设计并实验研究了 10 GHz 增益开关半导体激 光器的组合型三级脉冲压缩器。

首先采用色散补偿光纤对增益开关脉冲进行补

Fig.5 Autocorrelator trace of the output of the compressor of the comb-like dispersion profile fiber (point C in Fig.1) (The rest is the result of the numerical simulation)

Fig.6 The spectrum of compressed pulse. $\lambda_1 = 1.55158 \ \mu m$; $\lambda_2 = 1.55346 \ \mu m$; $\lambda_1 - \lambda_2 = 1.88 \ nm$; $\lambda_e = 1.55252 \ \mu m$

偿,初步消啁啾并压缩脉冲,其次利用正色散光纤加 负色散光纤组成的压缩器对光脉冲进一步压缩。经 过这两级压缩后,脉冲宽度达到 8.3 ps,再利用自制 的梳状色散光纤压缩光脉冲。由此可以有效地减小 梳状色散光纤的长度。实验中用 7.373 km 梳状色散 光纤得到了 2.8 ps 的输出脉冲。三级压缩器的总压 缩比为 9。进一步的优化实验可以得到更高的压缩 比。

实验中使用的 10 GHz 分布反馈布拉格激光器是 由武汉电信器件公司提供 大功率光纤放大器由天津 新光通信有限公司提供 天津大学精仪学院博士生丁 永奎同学在自相关测试中提供帮助 在此表示感谢。

参考文献

- [1]余建军 . 张晓光 杨伯君等. 负啁啾脉冲在正色散光纤中 传输特性研究. 光学学报, 1997, 17(10):1423~1428
- [2]余建军 杨伯君,管克俭. 50 GHz的 16.2 ps 超短光脉冲的产生.光学学报,1998,18(1):14~17
- [3] Bjerkan L, Røyset A, Hafskjær L et al.. Measurement of laser parameters for simulation of high-speed fiberoptic systems. J. Lightwave Technology, 1996, 14(5) 839 ~ 850
- [4] Agrawal G P. 胡国绛 黃 超译. 非线性光纤光学. 天津: 天津大学出版社, 1992. 66~100

[5] Agrawal G P. Nonlinear Fiber Optics. San Diego: Academic Press Inc., 1995. 228 ~ 231

[6] Chernikov S V , Taylor J R , Kashyap R. Integrated all optical

fibre source of multigigahertz soliton pulse train. *Electron*. *Lett*., 1993, **29**(20):1788 ~ 1789

Experimental Research on Three-Stage Compressing of 10 GHz Gain-Switch DFB Laser Output Pulses

Ma Xiaohong Yu Jinlong Dai Jufeng Yang Enze

(The College of Electronics and Information Engineering of Tianjin University, Key Laboratory of Opto-Electronics Information Technical Science, EMC, Tianjin 300072)

Yu Jianguo

(Wuhan Research Institute of Posts and Telcommunication, Wuhan 430074) (Received 26 February 2001; revised 9 April 2001)

Abstract: Several pulse compressing techniques of 10 GHz gain-switch semiconductor laser output pulses are stuided via methods of theoretical analysis, numerical simulation and experiment. A novel three-stage compressing technique is proposed which includes 1) compensation by normal dispersion fiber, 2) compressing by normal dispersion fiber followed by anomalous dispersion fiber, 3) compressing by comb-like dispersion profile fiber (CDPF). In this experiment, the compressed pulse width of 2.8 ps is obtained and the total compressing factor is 9. This technique is important for implementation of 80 Gb/s optical time-domain multiplexing system.

Key words: gain-switch semiconductor laser; group velocity dispersion; self-phase modulation; pulse compressing